Farming Implements in Action:

Impacts on the soil, erosion potential of tillage systems, and economics

Giulio Ferruzzi

Conservation Agronomist

USDA-NRCS

West National Technology Support Center

Portland, OR

What we'll cover today

Impacts of Farming Implements on the Soil

- Identify the types of soil disturbance
- Examples of farm implements that demonstrate specific types of soil disturbance

A look at different Corn-Bean tillage systems

- "Conventional" tillage system
- "Reduced" tillage system (CPS 345)
- "No-Till" system (CPS 329)

Economics

- Fuel/Energy consumption
- Other things to consider

Types of Soil Disturbance

 Inversion (some mixing) Mixing (only) Mixing and some inversion Lifting, fracturing Compression

STIR – Soil Tillage Intensity Rating

TILLAGETYPE	MODIFIER
Inversion	1
Mixing	0.7
Mixing and some Inversion	o.8
Lifting/Fracturing	0.4
Compression	0.15

$STIR = (0.5S) \times (3.25T) \times (D) \times (A)$

Where: S = Speed (mph) T = Tillage type modifier D = Tillage depth (inches) A = area disturbed (0-1.0)

Inversion (some mixing)

Fig. 29.—View of the movement of the furrow-slice. $a \ b$ Edge of land cut by preceding furrow. $i \ k, \ l \ m$ Furrow-slices previously laid over. $c \ d$ Slice being turned over by the plough. $i \ k, \ l \ m$ Furrow-slices of furrow. $e \ f$ Edge of land being left by the ploughing furrow. $i \ k, \ l \ m$ Furrow-slices previously laid over.

gressenhallfw.wordpress.com

Oklahoma Conservation Commission (www.ok.gov)

Moldboard Plow – Inversion (some mixing)

STIR = 65

Marlon Winger-NRCS

Moldboard Plow – Inversion (some mixing)

Marlon Winger-NRCS

STIR = 65

www.instructables.com from You Tube

www.instructables.com from You Tube

Inversion (some mixing)

Examples in RUSLE₂

Bulldozer, clearing/cutting
Plow, moldboard
Plow, moldboard 10 inch depth
Plow, moldboard 6-7 inch depth

Mixing

Rototiller-Mixing

www.deere.com

STIR = 18

Rototiller-Mixing

www.deere.com

www.facebook.com/RMSpeltz

Mixing

Examples in RUSLE2

- Harrow, rolling
- Harrow, rotary
- Harrow, rotary, light, fluff fragile residue
- Harvest, sprig rototiller digger
- Residue, row cleaner
- Rodweeder
- Rolling basket incorporator
- Rototiller, field
- Rototiller, field, add residue
- Rototiller, on beds
- Rototiller, row cult add residue
- Rototiller, row cultivator
- Subsoiler, in row strip conditioner
- Subsoiler, in row strip conditioner, 40 in row

Mixing and some Inversion

Tandem Disc-Mixing with Inversion

Marlon Winger-NRCS

Tandem Disc-Mixing with Inversion

Marlon Winger-NRCS

Agriculture Belgrade

Mixing and some Inversion

Examples in RUSLE2

Many Operations Including:

- Chisels
- Cultivators
- Disks
- Drills
- Planters
- Etc.

Lifting and Fracturing

Subsoiler / Ripper-Lifting and Fracturing

STIR = 33

Marlon Winger-NRCS

Subsoiler / Ripper-Lifting and Fracturing

Marlon Winger-NRCS

STIR = 33

Dave Koening Enterprises Inc.

Lifting and Fracturing

Examples in RUSLE2

<u>Several</u>Operations Including:

- Hoe Drills
- Fertilizer Applicators
- Manure Injectors
- Subsoilers
- Sweep Plows
- Etc.

Compression

Loose Soil

Compacted Soil

www.dpi.nsw.gov.au

Roller-Compression

www.extension.umn.edu

STIR = 0.98

nwdistrict.ifas.ufl.edu

STIR = 0.098

Roller-Compression

STIR = 0.098

nwdistrict.ifas.ufl.edu

www.agshield.com

www.uworganic.wisc.edu

Compression

Examples in RUSLE2

<u>Many</u> Operations Including:
"Graze" operations
Manure Spreaders
Rollers

Combo-Operations

STIR ≈ 20

www.summersmfg.com

STIR ≈ 20

www.kuhnnorthamerica.com

Combo-Operations

Examples in RUSLE2

<u>Many</u> Operations Including:

- Seedbed conditioners
- Seedbed finishers
- Some Chisels with harrows
- Some Cultivators with harrows
- Some Disks with rollers

Conventional Corn-Soybean

Reduced Till Corn-Soybean

•No-Till Corn-Soybean

Conventional Corn-Soybean Rotation

Date, m/d/y	Operation	Vegetation	Yield (bu/ac)
11/1/2001	Fert applic. surface broadcast		
11/1/2001	Plow, moldboard		
5/1/2002	disk, tandem light finishing		
5/5/2002	Cultivator, field 6-12 in sweeps		
5/5/2002	Sprayer, pre-emergence		
5/5/2002	planter, double disk opnr	Corn, grain	140
6/7/2002	Sprayer, post emergence and fert. tank mix		
10/20/2002	Harvest, killing crop 50pct standing stubble		
11/1/2002	Plow, moldboard		
5/5/2003	disk, tandem light finishing		
5/10/2003	Cultivator, field 6-12 in sweeps		
5/10/2003	Sprayer, pre-emergence		
5/10/2003	Drill or airseeder, double disk	Soybean, mw ⁊in rows	40
6/7/2003	Sprayer, post emergence		
8/1/2003	Sprayer, insecticide post emergence		
10/5/2003	Harvest, killing crop 20pct standing stubble		

Management STIR = 231 Avg. Annual STIR = 115.5

Conventional Corn-Soybean Rotation

Date,			Yield
m/d/y	Operation	Vegetation	(bu/ac)
11/1/2001	Fert applic. surface broadcast		
11/1/2001	Plow, moldboard		
5/1/2002	disk, tandem light finishing		
5/5/2002	Cultivator, field 6-12 in sweeps		
5/5/2002	Sprayer, pre-emergence		
5/5/2002	planter, double disk opnr	Corn, grain	140
6/7/2002	Sprayer, post emergence and fert. tank mix		
10/20/2002	Harvest, killing crop 50pct standing stubble		
11/1/2002	Plow, moldboard		
5/5/2003	disk, tandem light finishing		
5/10/2003	Cultivator, field 6-12 in sweeps		
5/10/2003	Sprayer, pre-emergence		
5/10/2003	Drill or airseeder, double disk	Soybean, mw ⁊in rows	40
6/7/2003	Sprayer, post emergence		
8/1/2003	Sprayer, insecticide post emergence		
10/5/2003	Harvest, killing crop 20pct standing stubble		

Management STIR = 231 Avg. Annual STIR = 115.5

Reduced -Till Corn-Soybean Rotation

Date,			Yield
m/d/y	Operation	Vegetation	(bu/ac)
4/28/2002	Fert applic. surface broadcast		
5/1/2002	Cultivator, field 6-12 in sweeps		
5/1/2002	Sprayer, pre-emergence		
5/1/2002	planter, double disk opnr	Corn, grain	140
6/7/2002	Sprayer, post emergence and fert. tank mix		
10/20/2002	Harvest, killing crop 50pct standing stubble		
11/1/2002	Chisel, st. pt.		
5/5/2003	Cultivator, field 6-12 in sweeps		
5/10/2003	Sprayer, pre-emergence		
5/10/2003	Drill or airseeder, double disk	Soybean, mw 7in rows	40
6/7/2003	Sprayer, post emergence		
8/1/2003	Sprayer, insecticide post emergence		
10/10/2003	Harvest, killing crop 20pct standing stubble		

Management STIR = 107

Avg. Annual STIR = 53.7

Conventional Corn-Soybean Rotation

Date, m/d/y	Operation	Vegetation	Yield (bu/ac)
11/1/2001	Fert applic. surface broadcast		
11/1/2001	Plow, moldboard		
5/1/2002	disk, tandem light finishing		
5/5/2002	Cultivator, field 6-12 in sweeps		
5/5/2002	Sprayer, pre-emergence		
5/5/2002	planter, double disk opnr	Corn, grain	140
6/7/2002	Sprayer, post emergence and fert. tank mix		
10/20/2002	Harvest, killing crop 50pct standing stubble		
11/1/2002	Plow, moldboard		
5/5/2003	disk, tandem light finishing		
5/10/2003	Cultivator, field 6-12 in sweeps		
5/10/2003	Sprayer, pre-emergence		
5/10/2003	Drill or airseeder, double disk	Soybean, mw ⁊in rows	40
6/7/2003	Sprayer, post emergence		
8/1/2003	Sprayer, insecticide post emergence		
10/5/2003	Harvest, killing crop 20pct standing stubble		

Management STIR = 231 Avg. Annual STIR = 115.5

Reduced - Till Corn-Soybean Rotation

Date, m/d/y	Operation	Vegetation	Yield (bu/ac)
4/28/2002	Fert applic. surface broadcast		
5/1/2002	Cultivator, field 6-12 in sweeps		
5/1/2002	Sprayer, pre-emergence		
5/1/2002	planter, double disk opnr	Corn, grain	140
6/7/2002	Sprayer, post emergence and fert. tank mix		
10/20/2002	Harvest, killing crop 50pct standing stubble		
11/1/2002	Chisel, st. pt.		
5/5/2003	Cultivator, field 6-12 in sweeps		
5/10/2003	Sprayer, pre-emergence		
5/10/2003	Drill or airseeder, double disk	Soybean, mw 7in rows	40
6/7/2003	Sprayer, post emergence		
8/1/2003	Sprayer, insecticide post emergence		
10/10/2003	Harvest, killing crop 20pct standing stubble		

Management STIR = 107

Avg. Annual STIR = 53.7

No -Till Corn-Soybean Rotation

Date,			Yield
m/d/y	Operation	Vegetation	(bu/ac)
11/1/2001	Fert applic. surface broadcast		
5/1/2002	Sprayer, pre-emergence		
5/1/2002	Planter, double disk opnr w/fluted coulter	Corn, grain	140
6/7/2002	Sprayer, post emergence and fert. tank mix		
10/20/2002	Harvest, killing crop 50pct standing stubble		
5/10/2003	Sprayer, pre-emergence		
5/10/2003	Drill or air seeder single disk openers 7-10 in spac.	Soybean, mw ⁊in rows	40
6/7/2003	Sprayer, post emergence		
8/1/2003	Sprayer, insecticide post emergence		
10/10/2003	Harvest, killing crop 20pct standing stubble		

Management STIR = 6.08 Avg. Annual STIR = 3.04

Tillage Systems – Erosion Impacts

Description	Contouring	Contour Buffer Strips	Conservation Planning Soil Loss, t/ac/yr	Soil Conditioning Index (SCI)	SCI OM subfactor	Average Annual STIR value	Fuel cost, US\$/ac *
Plowed rotation	rows up-and-down hill	(none)	12.7	-0.79	0.18	115	\$26.70
Reduced tillage rotation	rows up-and-down hill	(none)	5.95	0.013	0.24	53.7	\$17.90
No-till rotation	rows up-and-down hill	(none)	0.707	0.67	0.36	3.04	\$11.90

* based on \$2.50/gallon of diesel.

Tillage Systems – Erosion Impacts

			Conservation	Soil		Average	
			Planning Soil	Conditioning	SCIOM	Annual STIR	Fuel cost,
Description	Contouring	Contour Buffer Strips	Loss, t/ac/yr	Index (SCI)	subfactor	value	US\$/ac
Plowed rotation	rows up-and-down hill	(none)	12.7	-0.79	0.18	115	\$26.70
Reduced tillage rotation	rows up-and-down hill	(none)	5.95	0.013	0.24	53.7	\$17.90
No-till rotation	rows up-and-down hill	(none)	0.707	0.67	0.36	3.04	\$11.90
Plowed rotation + cont + midslope buffer	perfect contouring no row grade	One 15 feet wide Tall fescue buffer midslope	4.37	-0.11	0.39	104	\$24.00
Reduced tillage rotation +cont + midslope buffer	perfect contouring no row grade	One 15 feet wide Tall fescue buffer midslope	1.69	0.41	0.43	48.3	\$16.10
No-till rotation + cont + midslope buffer	perfect contouring no row grade	One 15 feet wide Tall fescue buffer midslope	0.297	0.78	0.54	2.73	\$10.70

Tillage Systems – Erosion Impacts

Slope Management Effects

Tillage Systems – Erosion Impacts

Slope Management Effects

Tillage Systems – Erosion Impacts

Slope Management Effects

We saw:

Description	Fuel cost, US\$/ac
Plowed rotation	\$26.70
Reduced tillage rotation	\$17.90
No-till rotation	\$11.90
Plowed rotation + cont + midslope buffer	\$24.00
Reduced tillage rotation +cont + midslope buffer	\$16.10
No-till rotation + cont + midslope buffer	\$10.70

But, what else needs to be considered?

Additional Costs and Consideration:

Additional Costs and Consideration:

<u>Capital</u>

- Additional field equipment required including no-till drill and spray rig.
- Increase in pesticide use (substitute tillage with chemical pest control).
- Annual operation, maintenance and replacement costs of new field equipment.

Additional Costs and Consideration:

<u>Capital</u>

- Additional field equipment required including no-till drill and spray rig.
- Increase in pesticide use (substitute tillage with chemical pest control).
- Annual operation, maintenance and replacement costs of new field equipment.

<u>Management</u>

• Increase management costs in developing crop, nutrient, pest plans and learning to operate the new equipment (especially the first years).

Additional Costs and Consideration:

<u>Capital</u>

- Additional field equipment required including no-till drill and spray rig.
- Increase in pesticide use (substitute tillage with chemical pest control).
- Annual operation, maintenance and replacement costs of new field equipment.

<u>Management</u>

• Increase management costs in developing crop, nutrient, pest plans and learning to operate the new equipment (especially the first years).

<u>Risk</u>

- Reduced flexibility when tillage is not available as a management option.
- High residue on cold and wet soils may delay crop emergence and early growth.

Let's Review

Impacts of Farming Implements on the Soil

- Identified the types of soil disturbance
- Saw examples of farm implements that demonstrate specific types of soil disturbance

Looked at different Corn-Bean tillage systems

- "Conventional" tillage system
- "Reduced" tillage system (CPS 345)
- "No-Till" system (CPS 329)

Explored Economics

- Fuel/Energy consumption
- Other consideration

QUESTIONS?

Shank you!

Giulio Ferruzzi Conservation Agronomist USDA-NRCS West National Technology Support Center Portland, OR (503) 273-2429 giulio.ferruzzi@por.usda.gov